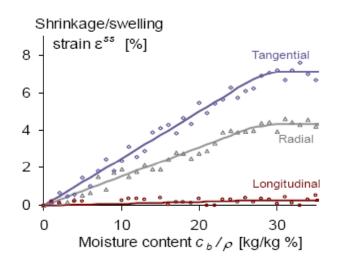
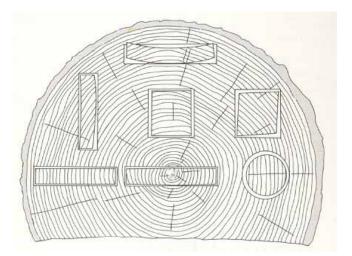


COST Action E55

Timber Structures exposed to Moisture

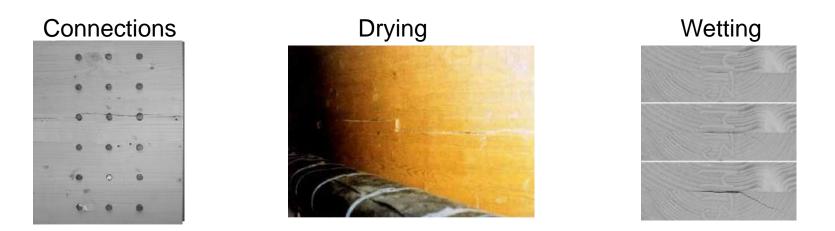

Jochen Köhler, Gerhard Fink Swiss Federal Institute of Technology

Problem overview


- The load bearing capacity of timber structural elements is affected by moisture and moisture variations, and, time history of applied loading (duration of load effect)
- In design codes, as e.g. the EC, these effects are accounted for by a factorization of strength with a modification factor (k_{mod})

Material	Standard	Service	Load-duratio			class	
		class	Permanent action	Long term action	Medium term action	Short term action	Instanta- neous action
Solid timber	EN 14081-1	1 2	0,60 0,60	0,70 0,70	0,80 0,80	0,90 0,90	1,10 1,10
Glued	EN 14080	3	0,50 0,60	0,55 0,70	0,65 0,80	0,70 0,90	0,90 1,10
laminated timber		2 3	0,60 0,50	0,70 0,55	0,80 0,65	0,90 0,70	1,10 0,90

• The effect of moisture on the load bearing behaviour might be differentiated:



- Stresses due to restrained shrinkage and swelling of the timber

- Accelerated aging (+DOL) as a result of moisture state and history

- The effect of moisture on the load bearing behaviour might be differentiated:
 - Stresses due to restrained shrinkage and swelling of the timber

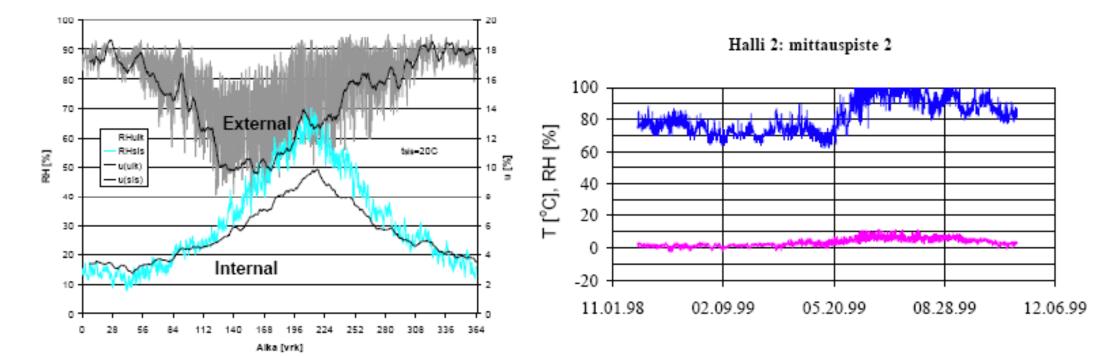
- Accelerated aging (+DOL) as a result of moisture state and history

- The effect of moisture on the load bearing behaviour might be differentiated:
 - Stresses due to restrained shrinkage and swelling of the timber [Type I]

- Accelerated aging (+DOL) as a result of moisture state and history [Type II]

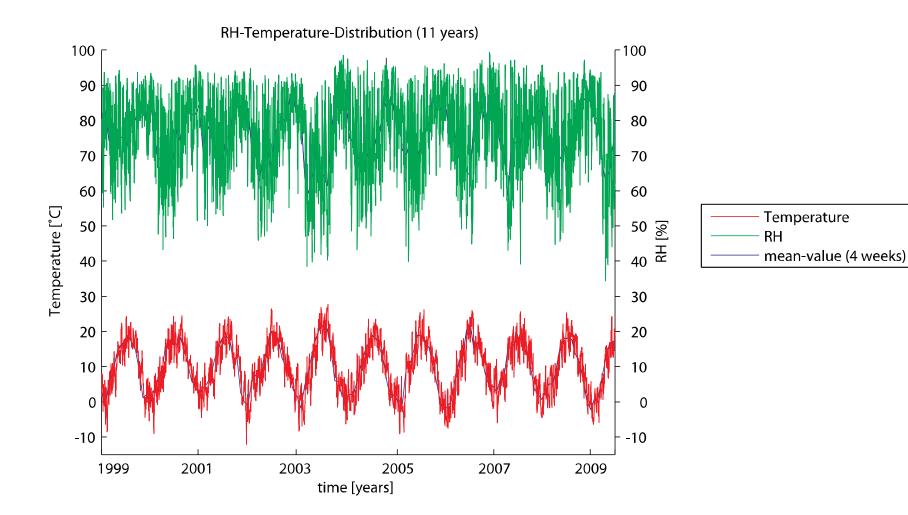
• Moisture effects as a problem when structures had failed:

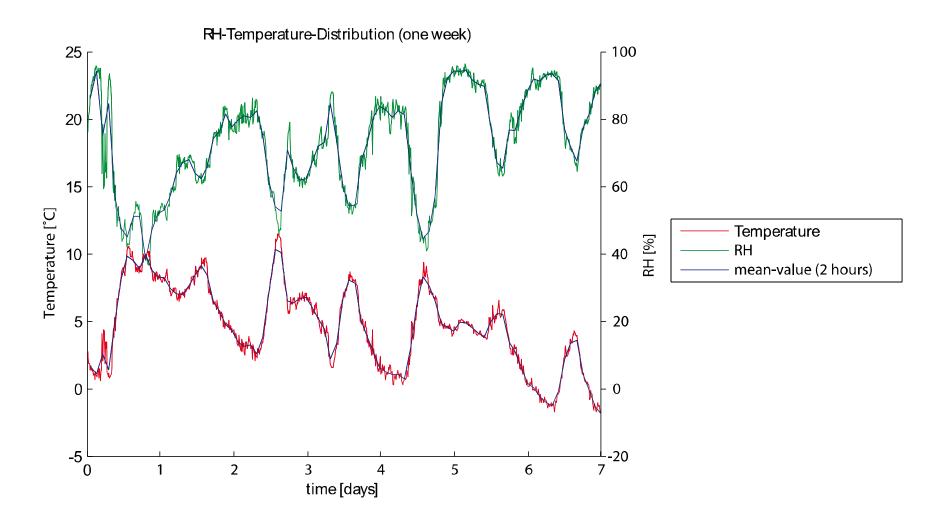
Failure Mode	% of cases analysed	Moisture Influece	
Instability	30	Likely (deformations)	
Bending failure	15	Possible (aging)	
Tension failure perp.	11	Yes, MIS	
Shear failure	9	Likely (cracks)	
Drying cracks	9	Yes	
Excessive deflection	7	Yes (creep)	
Tension failure	5	Possible (aging)	
Corrosion of fasteners / decay	4	Yes	
Withdrawal of fasteners	3	Possible	
Compression	2	Possible	
Other / unknown	21		

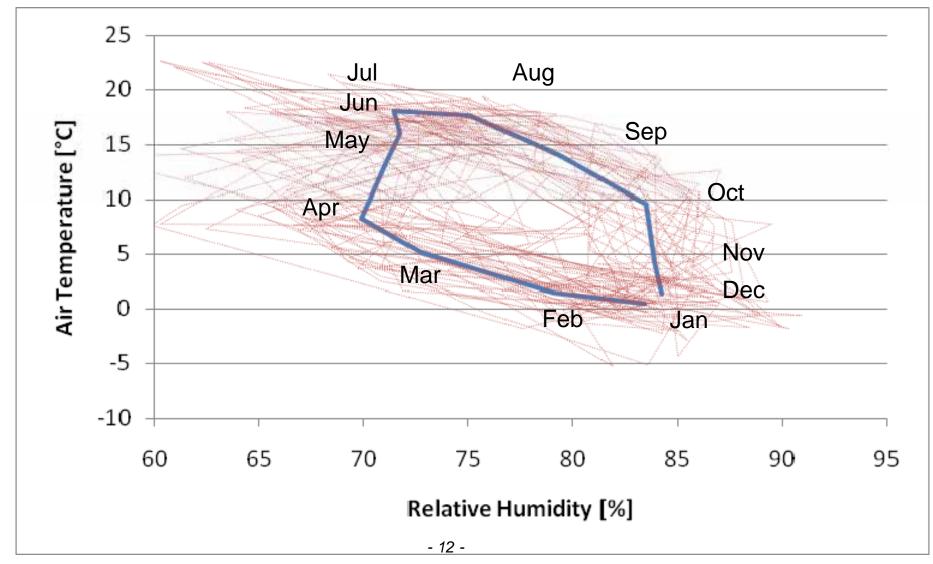

• Problem character and possible measures:

Effect	Characteristics	Design measures	
I a – rest. shrink. connections I b - rest. shrink. cross sections	 -Moisture induced stresses. -Stress dependent on peak to peak amplitude, period of RH and comp. cross section. -RH history not of interest – time independent. 	 -Specific regulations on: + Dowel arrangement perp. grain + initial moisture contents + in-service moisture contents - Moisture stress design for key components. 	
II - aging	 reduced strength Combined effect of load and RH history – time dependent. 	 -k_{mod} principle seems o.k. further development of model basis necessary. -Refinement of load duration and climate classification in codes. 	

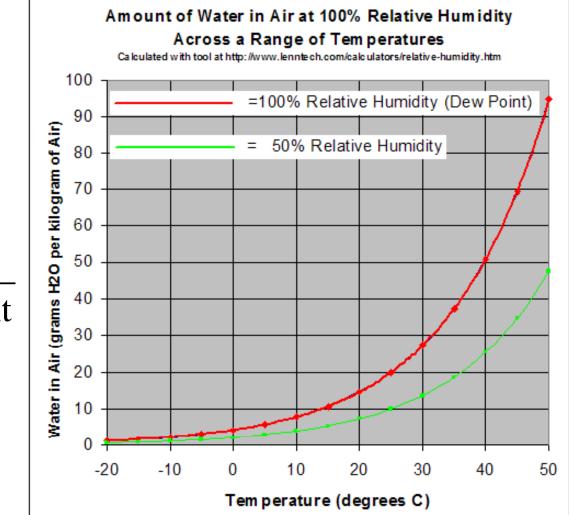
• Example:


Sibelius hall


Ice skating hall


Ref: Koponen, 2002

Ref: Kevarinmäki et al., 2000



- Good empirical basis for outside climates.
- Approach: Modelling the indoor climate as a function of:
 - The outdoor climate
 - Indoor moisture and heat production
 - Ventilation.

- Satiation level depends on the temperature
- Relative Humidity:

 $\varphi = \frac{c}{c_s} = \frac{\text{vapor content}}{\text{max vapor content}}$

• Humidity equilibrium

• Humidity equilibrium

$$\dot{M}_{i} + \dot{M}_{p} = \dot{M}_{o}$$

$$L \cdot V \cdot \varphi_{o} \cdot c_{so} \cdot \frac{T_{o}}{T_{i}} + \dot{M}_{p} = L \cdot V \cdot \varphi_{i} \cdot c_{si}$$

- L Air alteration rate $[h^{-1}]$
- V Volume [m³]
- $\varphi_{o,i}$ Relative Humidity (outside/inside)
- $C_{so,si}$ Satiation vapor content $T_{o,i}$ Temperature

• Humidity equilibrium

$$\varphi_i = \varphi_o \frac{c_{so}}{c_{si}} \cdot \frac{T_o}{T_i} + \frac{M_p}{L \cdot V \cdot c_{si}}$$

- L Air alteration rate $[h^{-1}]$
- V Volume [m³]
- $\varphi_{o,i}$ Relative Humidity (outside/inside)
- $C_{so,si}$ Satiation vapor content $T_{o,i}$ Temperature

• Humidity equilibrium

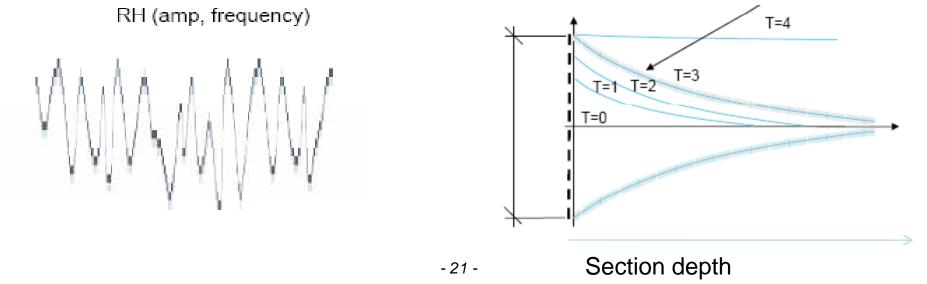
$$L = \infty \longrightarrow \varphi_i \cdot c_{si} \cdot T_i = \varphi_o \cdot c_{so} \cdot T_o$$

Vapor content inside = Vapor content outside

- *L* Air alteration rate [h⁻¹]
- V Volume [m³]
- $\varphi_{o,i}$ Relative Humidity (outside/inside)
- $C_{so,si}$ Satiation vapor content $T_{o,i}$ Temperature

• Reference Values:

_	Produced Humidity Office working person handcrafter	M _P [g / h] 50 150
	Professional athlete cooking	1000 500 – 1000
-	Air alteration rate	$L \ [h^{-1}]$
	Tilted window + down shutters	0.3 – 1.5
	Tilted window	0.8 - 2.5
	Tilted window + cross-ventilation	2.0 - 4.0
	Half-open window	5.0 - 10.0
	Open window	9.0 - 15.0
	Open window + cross-ventilation	20.0 - 40.0


• Reference Values:

 Building Types 	φ_i [%] (yearly cycle)
Outdoor sheltered	100 - 55
Indoor heated	15 - 60
Swimming, Ice skating	75 - 99
Hospitals	40 - 60
Theater, Sports	50 - 80
Stair case	50 - 70
Industry	40 - 50

Summary and Outlook

- Highly resulted outdoor climate data available
- Indoor climate as a function of outdoor climate and building characteristics
- Proper time resolution of the data?

www.cost-e55.ethz.ch

Thank you for your attention